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Molecular dynamics simulations and theoretical calculations are used to study the static structure and
dynamic properties of the liquid alkaline earths near their melting points. Where possible, comparison with
experiments lends support to the reliability of the potentials used. On the other hand, comparison between
theory and simulation enables a discussion of the limitations of the theory and its possible improvements.
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I. INTRODUCTION description of the dynamic behavior of the alkaline-earth lig-
uid metals near their melting points.

During the last decade the study of the dynamic properties Besides experimental and MD studies of the dynamics of
of liquid metals has been the subject of numerous investigdiduids, theoretical investigation has also made a consider-
tions, both experimental and theoretidake, e.g., Ref[1] able progress in th_e last few years due to the developmen_t_of
for an overview. The liquid alkali metals have been in par- NonPhenomenological approaches based on the recognition
ticular the most thoroughly studied ones. Inelastic neutrory {/(F)Tftiggpsﬂﬁﬂg? dgL(tevr\:g edr:{f%rgge(r?i/ggor}“gl'g?%?s?ts ?; én the
scattering has been used for the investigation of almost aﬁ/hich gives rise to a rapid initial decay, is due to fast uncor-

the alkalis .[2_5]' _Molec_ular dyna_ml_cs(_l\/ID)_ S|mu|at|ons_, related short-range interactions, which can be broadly iden-
when provided with suitable realistic mterlqnlc p.oteptlals,tiﬁed with “binary” collisions. The second process, which
are also an extremely useful tool for the investigation of ga|ly leads to a long-time tail, is attributed to couplings of
liquids at a microscopic level, since they provide detailedthe dynamic variable of interest with other slowly decaying
information of the atomic trajectories which complementscollective variablegcalled “modes’), and therefore it is re-
the partial information that can be extracted from experiferred to as a mode-coupling process. Although the expres-
ments, and also gives access to some dynamic propertiggons involved in the evaluation of these two contributions to
which are very difficult(in some cases impossibl® obtain  the dynamic properties are rather complicated, in some cases
experimentally. The key ingredient of MD simulations, i.e., it is possible to make some simplifying approximations lead-
realistic interionic potentials, are readily available for theing to more tractable expressions, while retaining the essen-
alkali metals, such as those derived from the empty cordial physical features of the processes. Within this line, Balu-
model pseudopotentigb], or those derived from first prin- cani and co-worker§10,21,23 made a thorough theoretical
ciples, like the neutral pseudoatofNPA) pseudopotential Study of the dynamic properties of liquid alkali metals using
[7,8]. Based on this availability, dynami@as well as static ~ potentials derived from the empty core model. More re-
properties of the liquid alkali metals have also been studiegently, a scheme has been develoff2g] that enables a fully -
by MD simulations[9—14]. consistent deter.m|nat|on of aII.the smgl_e-pamcle dynamic
Compared with the alkali metals, their neighbors in theProperties(velocity autocorrelation function, mean square
periodic table, i.e., the liquid alkaline earths, have receivedliSplacement, self-intermediate scattering function, and dif-
much less attention. Experimental measurements of theftSion coefficient This scheme was applied to study the
static structurd15] have been reported and also some ther-;jyna.ImIC properties of liquid Li close to its melting point,
modynamic and transport propertigss,17] have been mea- eadmg to rather good result.s as co.mpared.to MD and ex-
sured. On the other hand, at least to our knowledge, no e)ge_rlm_e_ntal daf[a. A second aim in this _vvork IS to che_ck the
perimental investigation of their dynamic properties has beer'iellablllty of this theory by comparing W'.th MD S|mulat|on_s,
performed. With respect to MD simulations, we are onlya.nd to assess the degree of applicability of th.e approxima-
aware of a study of liquid alkaline earths using optimizedtlons involved in the theory as well as the possible improve-
plane wave pseudopotentidl$8] that focused only on the ments that can be. made. S .
static structure. This scarceness of simulations is probabl In sec. .” we briefly cpmment on the interionic potgntlals
due to the corresponding scarceness of reliable potential%nsed.In th's. work, and in Secs. lll _and IV we descrlb_e the
Recently, Gonzaleet al. [19] proposed effective interionic D simulations _and the the(_)ry apphed. In Sec. V we discuss
potentials obtained from the NPA method which, when useahe resglts o.btallned, and, finally, in Sec. V1, a summary of
together with an accurate liquid state theory, produce Statigonclusmns IS given.
structure factors in good agreement with the experimental
ones. A first aim in this work is to reassure the reliability of
these potentials by obtaining “exact” MD structure factors  The interionic pair potentials used in this work for the
to compare them with experiment, and also to obtain a firstalculation of the dynamic properties of the liquid alkaline-

Il. EFFECTIVE INTERIONIC PAIR POTENTIALS
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0.25 ary conditions. The potentials were truncated at rediisee
r Table 1), which in each case was taken to correspond with
0.15 1 1 the position of the maximum or minimum of the potential
£ 0.05 [ ] just before the largest distance allowed by the periodic
2 ; ] boundary conditions, one-half the boxlength. At the cutoff
> -0.05 [ ] radii, the potentials for Mg, Ca, Sr, and Ba have respectively
i ] dropped to 0.15%, 0.06%, 0.10%, and 0.11% of the values at
-0.15 ] the first attractive minima.
: The computational procedure was as follows. For each
025 Lt - :
2 4 6 8 10 12 system, at the chosen density and temperature, a canonical

r (A) MD simulation was first carried out using the Nosenstant
temperature methofR4]. The initial configuration was ob-
FIG. 1. Effective interionic palr pOtentIals used in this work. talned from meltlng a fCC structure. The equatlons Of motlon
were solved using a fourth-order Gear predictor-corrector al-
earth metals are the same as those of REJ]. They are  gorithm[25] with a time stepAt of 0.002 ps. The energy of
obtained USiﬂg the NPA method, which is very brlefly de-the system was then calculated by averaging ngﬂ_ql
scribed next; for more details, see REE9] and references  time steps.
cited therein. Starting now from a configuration with an energy close to
The construction of effective interionic pair potentials for the average value obtained as indicated above, microcanoni-
simple metals is based on the use of pseudopotentials igal MD simulations were performed using the velocity Ver-
describe the ion-electron interaction, and the application ofet algorithm [25] with the same time step as above,
second-order perturbation theory of a uniform electron gag\t=0.002 ps(microcanonical simulations are better than ca-
— linear response theoy.RT) — in order to calculate the nonical simulations for studying dynamic properties because
energy of the system. The resulting expression gives the ebf the difficulty in controlling the heat exchange rate variable
fective pair potential as a sum of the direct Coulomb repulin the Nosemethod. For Mg, this guarantees conservation of
sion between the ions and an electron-mediated part which ie total energy to within 0.004%; for the other metals, the
obtained in terms of the pseudopotential and the responsgnservation of the energy is even better. The positions
function of the uniform electron gas. The exchange and corand velocitiesv; of the particles were recorded every five
relation effects are introduced in the response function as fme steps. The properties of interest were obtained by aver-
local field factor via the local density approximation. aging over X 10° time steps after an initial equilibration
the electron density displaced by an ion embedded in thge|ow, for completeness, the expressions used to compute
electron gas is obtained from first principles using densityine thermodynamic, structural, and time-dependent proper-
functional theory. Second, the density is smoothed so as tgeg analyzed in this workfor more details about the theo-
eliminate the core-orthogonality oscillations that cannot apyetical background, we refer the reader to R¢25—29);
pear with a pseudopotential. Finally, a local pseudopotentialechnical details are also given when strictly necessary.
is constructed such that, when used within LRT, it repro- | our simulations we obtained the specific heat at a con-
duces the same smoothed electron density. The pair potegtant volume; the distribution functions that describe the
tials thus obtained for the liquid alkaline-earth metals closestatic structure of the systems, namely, the pair distribution
to their melting points are shown in Fig. 1. The densities andnction g(r) and the structure factd®(q); some time cor-
temperatures of the systems are given in Table I. It must bgs|ation functions, namely, the mean square displacement
stressed that the pair potentials are density dependent, a(‘ﬂﬂ(t)) and the normalized velocity autocorrelation func-
this fact impl@es that not .aII the thermodyngmic propertiestion Z(t), which are related to the diffusion coefficieDt
can be meaningfully obtained in computer simulations. 5 the stress autocorrelation functigt), which is related
to the shear viscosityjs.
IIl. MOLECULAR DYNAMICS SIMULATIONS The isometric specific hedper atom was obtained using

. . _ ) _ the expression
Using the potentials described in Sec. I, we simulated

liquid Mg, Ca, Sr, and Ba at the states shown in Table I. In 1
all cases, the simulations were performed by considering a CU=N[1—(1— m><Ekin><Ekin>
system ofN =864 atoms in a cubic box with periodic bound-
wherek is the Boltzmann constanE,;, is the total kinetic
TABLE I. Thermodynamic states considered in this work andenergy, and the angular brackets denote an average over an

-1

: D

cutoff radii used in the MD simulations. entire run.
The pair distribution functiomg(r) was obtained by aver-
p (A3 T(K) re (A) aging the number of pairs of particles separated by a distance
Mg 0.038 29 053 14.100 betweerr andr + ér [25], whereas the static structure factor
ca 0.020 58 1123 17.225 was computed as
Sr 0.016 36 1053 18.711

N N
1
Ba 0.014 56 1003 18.768 S(q):N 21 ,Zl exd —iq-(ri—r)]), 2)
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q being a wave vector compatible with the periodic boundaryusing a cubic spline. The convolution, i.e., the right-hand
conditions, i.e.g=(27/L)(ny,ny,n,), whereL is the length side of Eq.(8), was then used to calculate an approximated
of the simulation box and,, are integers. The angular brack- time derivative, which was compared with the exact value
ets in Eq.(2) denote averaging both over the trajectories ofPreviously computed to obtain the mean square deviation of
the particles[10* recorded configurations, each one sepathe initial approximation fork(t). The software package
rated by 10At, were considered for computing(q)] and ~ MERLIN [30] was then used to optimize the 50 values of the
over all theN,, directions corresponding to the same modulus?ef_n?_ry functionK(t) by minimizing such a mean square
q. eviation.

Two different time-dependent correlation functions re- The initial value of the memory functiok(t) gives the
lated to the diffusion coefficient were computed. One is thesquare of the Einstein frequencye, which can also be

mean square displacement directly evaluated from the MD simulation data using the
expression
1 N
<Ar2(t)>=—<2 [ri(t)—ri(O)]2>, () N
N\ = S (F
, =
from which D is obtained using the Einstein relation E" 2m(Eg) 9
2
D= “mM_ (4 whereF; is the total force exerted on atomBoth methods
o Ot for calculatingwg gave results in very good agreement for

all metals studied in this paper.
The other is the normalized velocity autocorrelation function  The time-dependent elements of the microscopic stress

Z(t), defined as tensor are given by
N N N-1 N
<§1vi(t)-vi(0)> Jap=m2 viof()+ 2 X rimFL),
i=1 i=1 j=i+1
Z(t)= N , ©) (10)
<2 vi<0>2> | . —
=1 wherev;* is thea component of the velocity of atomrjj is

the « component of the vectar; separating atomsandj,
and Fﬁ‘ is the 8 component of the force exerted by atoran
atom j. By considering the off-diagonal elements of the

which allows one to obtain the self-diffusion constant
through the Green-Kubo formula

KT (o stress tensor, we computed the stress autocorrelation func-
D= FJ'O dt Z(t), (6)  tion 7(t) as
wherem is'the atomic mass. Both methods fqr cqlculgtlihg n(t)= %Z (Jap(1)3ap(0)), (12)
gave consistent results for all the metals studied in this paper. af

The dynamic correlation functions given by E¢3) and (5) ) ) )
were computed by averaging over 7680 time origins, eacMhere the sum is to be made on the circular permutation of

one separated by 2A&t. These two functions are in fact the indicesaB (xy, xz, andyz). From the stress autocorre-
related to each other by the equation lation function, the shear viscosity was obtained using the

Green-Kubo-like formula

(AF?(1) —Gkad (t—9Z(7) @
= (t—7)Z(7). o
m Jo 7= [t a0, 12

A central magnitude in our study is the memory function _ _ _ o
of the velocity autocorrelation functiori(t), which is de- ~ The shear viscosity was also computed using the Einstein-
fined by the Volterra equation like equation

1 LAY

s~ 2Vth“_rIl r

_ t
Z(t):—JOdT K(t—7)Z(7), (8) (13

whereZ(t) means the time derivative &{t). The procedure Lg(t) being a “mean square displacement,” related to the
for calculating the memory functiok(t) was as follows. off-diagonal elements of the stress tensor by

From the computed values @{t) [Eq. (5)], we obtained the

time derivative, i.e., the left-hand side of E§). Then, start- Lz(t):<
ing from an initial approximation for 50 points of the s
memory function K(t) uniformly distributed within the

range O-t,ay, Wheret,, is the maximum time for which  where the angular brackets denote average both over a num-
we computedZ(t) (typically, 1-2 p$, we constructed an ber of 7360 time origins and the nondiagonal indices of the
initial memory function for all times in whicE(t) is defined  stress tensor.

t 2
JodT Jap(7) >, (149
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IV. THEORY

K(0)=Kg(0)
In the theoretical calculation of dynamic properties of a , )
liquid, the static structure is required as an input. This has __ 2_p d {V z¢'(r) ] 9(r)
been obtained within the variational modified hypernetted m? T r
chain (VMHNC) theory[31,32.
For the computation of the dynamic properties and the p\? , zo' (1) Z’¢'(r")
transport coefficient, we follow the theory proposed in Ref. _<5) j drf dr'v, r }Vr’ [

[23], which enables, within certain approximations, the self-
consistent determination of all the one-particle time correla- X[g®(r,r')=g(r)g(r]. (19
tion functions. This is briefly described below.
The three-body contribution tey is computed by using the
simple superposition approximation for the three-body distri-

A. Self-diffusion bution function, i.e.,
The key magnitude in the theoretical study of the one- YR , o
particle dynamics of a liquid is the memory function of the g (r.r)=g(mar)g(r=r')). (29
velpc_ity autocorrelgtion functiorK (t). This function can be \yjithin this approximation, the second integral in E&9) is
split into two contributiong20,33, conveniently evaluated ig space, as noted in RéR23] (see

also Ref[34]).
Finally, for Kg(t) we use a simple semiphenomenological
approximation that reproduces the correct short time expan-
which represent two distinct dynamical regimes. The firstsion. There are of course many functions that fulfill this re-
term, Kg(t), comprises all the fast decay channels and igquirement. In the literature the most widely found are the
supposed to represent the effects of a “binary” collision hyperbolic secant square@hS and the GaussiaiThG)
between the tagged particle and another one from the suferms. Although both of them start in exactly the same way,
rounding environment. The second term, i.e., the modetheir tails are different; in fact, the hyperbolic secant squared
coupling contributionKy,c(t), incorporates the effects of is somewhat wider than the Gaussian. In this paper we will
multiple collisions through the coupling with slowly decay- consider both of them, namely,
ing collective properties.

K(t) =Kpg(t)+Kyc(l), (15

Kg(t)=w2sech(t/mp) (21)
1. Binary contribution and
At very short times the memory function is dominated by o 2
Kg(t), and in fact the initial valu& (0) and the curvature at Kg(t)=wg exf —(t/mp)°]. (22)

t=0, K(0), aregiven by the corresponding values Kf.  Note that in this way the binary contribution #(t) is
The short time expansion &(t), evaluated from the static structural functions only.

2. Mode-coupling component

t 2
K(t)IK(O)[l—(T—) + - } (16) In Eq. (15), Kyc(t) takes into account the coupling be-
D tween the dynamics of the tagged particle and slowly decay-
ing collective modes, which results in a long time tail in the

defines the initial decay timep , memory function. This long time tail irK(t) has been
known to be essential in the correct description of the one-
. 1 particle dynamic properties since the pioneering analysis of

| IK(0)] 17 Levesque and VerldB5]. A rigorous treatment of this term
D™ 12K (0) requires the use of kinetic and mode-coupling theories, and

the actual details can be found, for instance, in R&3). In
M h ties d 4 onl h _ rinciple, several couplings should be considetdédnsity-
oreover, these quantities depend only on the static StruGyenity density-longitudinal currents, and density-transverse

ture of the liquid. As stated above, the initial value of the ., ents hut for systems near the melting point the most
mzemorY function is given by the Emsteln_frequen(_:y Squaredimportant contribution comes from the density-density cou-
g, which can be obtained from the pair potential and thes|ing. This has been observed in calculations for liquid Rb
radial distribution function, [36], liquid Na[11], and liquid Pb[37] in thermodynamic
states close to melting.
P We therefore restrict to density-density coupling, which

K(O)=KB(0):w§:3—mJ dr g(r)V2e¢(r). (18 leads to the following expression fétyc(t):

pkT
_ . . Kue(t)=
The initial curvature, and thereforg , is also determined by me(t) 672m

the static structure, but in this case there is a contribution 5 5
arising from the three-body distribution functigt®(r,r’), —Fs(q,0)F(q,)]. (23

| da derarFianF@n

0
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Herec(q) denotes the direct correlation function, ang,t)
and F¢(q,t) are the intermediate scattering function and its
self-part, whereas the superscrisdenote the correspond-
ing “binary” parts.

Ky(t)=w? sech®(t/7,)
or

K, () =} exp(~(2/7,)°

In order to evaluate the integral of E(3), we need to L 2
use some approximations for the intermediate scattering @0 =F a0
functions and their binary partsee Ref[23] for details.
First, the binary part of the self-intermediate scattering func- 4
tion is taken as that of an ideal gas, . T iT ,,]
F, (q,t)=exp|_—%q t J
F3(q,t)=Fo(q,t)=expg — qut2 (24)
S ! 0 ! Zm ' W
Second, we assume that the ratio betwé&dn,t) and its — [K()=K; () +K, ()
binary part can be approximated by the ratio between their ¥
corresponding self-parts,
|2(t) =-Jx(t-n)zm) dtI
PR LIPI (25) v
" Ryt T
OKT |+
AP (1)) = =] (1-T)Z(1) &
For F(q,t) we use the well known viscoelastic model with a o m J"(t Dz &
relaxation time determined by Lovesey’s sche88]. Note ¥
that within this approacl(q,t) is also determined only by — i
the static structure of the liquid. Finally, férs(q,t) we use F. (g0 = exp] =g’ {Ar* () |
the Gaussian approximatid@6]
v
Fy(a,t)=exd — 5a%(Ar?(1))], (26) :
o= 28D pg
. . T
which gives correct results for small and largeand also
has the correct behavior at short times. v
3. Self-consistent procedure K MCoF%I: a*c@lF.(a.)F@.0 -F q.0F(g,1)]dq

The binary part of the memory functioiz(t) and the
intermediate scattering functidf(q,t) are given in terms of

the static structural properties only. The binary part of the ) _
self-intermediate scattering function is given by the ideal gastudies[23,39 have shown that in thermodynamic states

result, which depends only on the temperature of the systenfi€ar melting the last two contrib_utions are rqther small, an.d
On the other handF(q,t), and through iF8(q,t), depend therefore the stress autocorrelatlon funct!oq is well approxi-
on the mean square displacemfEgs. (26) and (25)]. This mated by its _potentlal part on_Iy. In a S|m|Iar_ way as_the
means that the mode-coupling contribution to the memory€mory function of the velocity autocorrelation function,
function, Kyc(t) [Eq. (23)], depends ofAr2(t)). But the this purely pc:te_ntlal ,f:ontnbutlon tg(t) can be s_eparateq in
mean square displacement can be obtained from the velocif#© Parts: a “binary” part and the mode-coupling contribu-
autocorrelation functioZ(t) [Eqg. (7)], which itself is deter- 1N
mined by the memory functiofEq. (8)]. Therefore, we ar-

rive at a self-consistency problem, displayed in Fig. 2. Start-
ing from some estimate oKyc(t), and using the known
values ofKg(t), we obtainK(t) from Eg.(15). From this we
computeZ(t) through Eq(8), and the mean square displace-
ment[Eq. (7)]. The Gaussian approximation then determined\"
F«(q,t). This is then used to obtaiR®(q,t) which, together
with the known values of (q,t) andFE(q,t), leads to a new
estimate ofK,,c(t) through Eq.(23). This loop is then iter-
ated until self-consistency between ingKif,c and output
Kwuc is achieved.

FIG. 2. Algorithm for the self-consistent determinationkoft).

7(t)=ng(t) + nuc(t). (27)

As we did in the case of self-diffusion, we will use the two

different Ansazefor the binary component, namely, the ThS
satz

78(t)=Gpsech(t/r,), (29
and the ThG one,

7e(t) =Gpexd — (t/7,)%], (29
B. Shear viscosity whereG,,, the rigidity modulus, is the initial value of both
The microscopic stress tendég. (10)] has a kinetic term  #(t) and »g(t), and 7, is their common initial decay time.
and a potential term. Therefore, the stress autocorrelatiohhese two magnitudes can again be obtained from the static
function »n(t) has three different components: a purely po-structure of the system on[23]. The superposition approxi-
tential term, a purely kinetic term, and a cross term. Previousnation forg®® is also used in the evaluation of,.
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FIG. 3. Pair distribution function of the liquid alkaline earths. ~ FIG. 4. Static structure factor of the liquid alkaline earths. Open
Solid line: MD simulations; dotted line;: VMHNC calculatioiRef.  cCircles: MD simulations; dotted line: VMHNC calculatiorfRef.
[19)); full circles: Fourier transform of the experimental structure [19)); full circles: experimentRef. [15]).
factor (Ref.[15]).

main peak ofS(qg), which was overestimated by the theory

The mode-coupling term, in the approximation of consid-for the heavy elementgl9], is reproduced by the simula-
ering only density-density couplings, is given by tions, showing that this fact is to be ascribed to the pair
potentials used and not to some failure of the liquid state
theory. As explained in Ref19], it is expected that a proper
inclusion of polarizability effects would lead to a lowering of
this peak.

As we mentioned above, the computation of thermody-

Within the approximations stated above for the intermediaté@Mic quantities of metals by computer simulations is com-
scattering functions and their binary parts, we can evaluatBlicated due to the density dependence of the effective pair
this integral once we know the mean square displacemenpOtentials, and also to the presence of a structure-

for which we use the one obtained through the self-consisterffdependent, but density-dependent, volume term, which ap-
procedure. pears in the formulas for the thermodynamic quantities

particular, the energy and the pressuddl the contributions

to the thermodynamic properties coming from these terms
and from the explicit density dependence of the pair potential
are ignored in computer simulations, and therefore direct
comparison with experiment is not always possible.

One magnitude not affected by these problems is the spe-
¢ heat at a constant volume, which we computed from Eq.
(2). Unfortunately, we are not aware of experimental mea-
surements of this particular property. Therefore we compared
&he simulation results fo€, with values calculated from the
VMHNC theory. This comparison is shown in Table II,

2
{F(a,H)2—F&q,1)%.
(30

S'(q)
SA(q)

kT jw
t)=——| d
7mc(t) 60720 qd

V. RESULTS
A. Static structure and thermodynamics

In a previous papefrl9] the VMHNC theoretical results
for the structure factor were compared with the experimenta&ﬁ
ones[15], and the theoreticay(r) with that deduced from
Fourier inversion of the experiment&(q), and also for
comparison with computer simulations carried out using
different interionic potential18]. In this section we include
in the discussion the MD results obtained from the NPA

potential as calculated in this work. TABLE Il. Structure dependent energy per partiie units of

In Fig. 3 we show the pair distribution functioggr) for kT) and constant volume specific heat per part{oieunits ofk) for

the alkaline earths near their melting po_lnt. The agree_mer}he liquid alkaline earths. The uncertainties of the MD results are
between the theoretical results and the simulation data is e>§-lven in parentheses.

cellent, and only minor discrepancies exist regarding the
height of the peaks, especially in the cases of Sr and Ba. For

, , : Eo/NKT G, /Nk
these_systems the values obtained from the inversion of the MD Theory MD Theory
experimental structure factor are somewhat closer to the
simulation than to the theoretical results, in particular in theMg -2.202 -2.201 3.02 3.013
region around the second peakgtfr). (0.009) (0.09

The static structure factors are shown in Fig. 4, where th€a -6.602 -6.619 3.30 3.342
theoretical results are plotted together with Waseda’s experi- (0.00) (0.09
mental data and the simulat&dq), obtained using Eq2). Sr -7.355 -7.340 3.5 3.549
The experimental structure factors closely follow the results (0.002 0.9
obtained from both the VMHNC theory and the MD simula- Ba -10.220 -10.093 3.7 3.612
tion, which are themselves almost coincident forghealues (0.003 (0.1

computed in the simulation. In particular, the height of the
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TABLE IIl. Initial decay time for K(t), squared Einstein fre- 1200 ; ‘ . ‘ 500
quencies and diffusion coefficients for the liquid alkaline earths. 1000
The MD wé results shown are those computed using @g. The 800
uncertainties of the MD results are given in parentheses. Se00 L
400

Mg

5 (P9 wZ (ps7?) D (A%p9 200 [\, ] .
Theory MD Theory MD Ths ThG o0 0.1 O‘L:t(p(;jS 04 0.5 0 011 O‘.2 ?I[S )0.4 05 0.6
Mg 0.03865 1006.17 998.74 0.665 0582 0.646 200 :
(0.03 (0.009 150 ] ]
Ca 006329 41193 411.76 0.606 0631 0702 _
(0.02 (0.006 g 100 ]
Sr 0.1037 165.09 165.78 0.321 0.391 0.435 50
(0.03 (0.004 o b5 AR
Ba 0.1380 97.47 97.65 0.233 0.305 0.332 o 0.5 tl(ps) 15 2 o tl(ps] L5 2
(0.02 (0.004

FIG. 5. Memory function of the velocity autocorrelation func-
tion. Solid line: MD simulations; dashed line: theoretical ThS cal-
where we see a good agreement between both sets of resulégiations; dot-dashed line: theoretical ThG calculations.

Even though the total energy, as explained above, cannot

be obtained by computer simulations, the structurexongibution has decayed to zero, i.e., 5> 3.5 approxi-
dependent term can be straightforwardly computed and comgately. The theoretical mode-coupling contribution is ob-
pared vyith theoretical prediction.s. This comparison is alsQaryed to change very little when we use either the ThS or
shown in Table I, again observing a very good agreemenfhe ThG Ansaze It exhibits a typical behavior for all the
between VMHNC data and MD results. systems. It shows a first peak at short times arotihd
=1.5-2.3, where the binary constribution is still large, or at
B. Time-dependent and transport properties least significant, followed by a minimum and then a second

We applied the theoretical iterative scheme described@ak around* =4. For times larger than this the binary part
above to compute the memory function of the velocity auto-nas already decayed to zero aqft) =Kyc(t). Its behavior
correlation function, along with the velocity autocorrelation in this region is oscillatory around a slowly decaying tail.
function, the mean square displacement, and the diffusionhe same is also true for the MD memory function.
coefficients of the alkaline earths near their melting points. As we go from Mg to Ba we see the following trends. The
Moreover, we computed the stress autocorrelation functiofirst peak inKyc keeps almost the same height, but moves to
and the shear viscosity using the theoretical formalism consmaller values ot*. On the other hand, the height of the
sidered above. These are compared with the “exact” MDsecond peak and the amplitude of the subsequent oscillations
results for the same interionic potentials, and, where approaround the decaying tail increase as we move down the

priate, also with experimental data. alkaline-earth series. When compared with the MD data, one
can observe that the theoretical functions show, in general,
1. Self-diffusion too large an amplitude of the oscillations; these are shifted

The values of the initial decay time of the memory func- toward slightly larger values df*, and the amplitude of the

tion, 7, for the alkaline earths, together with their squared
Einstein frequencies, are shown in Table Ill, where we can ¢!
observe an excellent agreement between the theoreifcal 0.08
and the simulated ones. This is a consequence of the goocg 006
description ofg(r) by the VMHNC theory. It is also ob- &0.04
served that, as we go from Mg to Ba, the initial decay time g2 |
increases, and the Einstein frequency decreases, due mostl '
to the increase in the mass of the atoms.

The total memory functions are plotted in Fig. 5, where
we have included the MD memory function and the theoret- %2
ical K(t) according to the ThS and Th@nsaze for its bi-
nary part. It is observed that the behavior of the memory
function for short times is clearly dominated by the binary  o.04
contribution. We observe that the correct decayKdf) is '
better reproduced by the Th@nsatzin the case of Mg, by
the ThSAnsatzin the case of Sr and Ba, and is in between

both theoretical results in the case of Ca. FIG. 6. Scaled mode-coupling component of the memory func-
The binary and mode-coupling contributions are shown injon. Solid line: total MD memory function; dashed line: theoretical

Fig. 6 in reduced unitstt =t/ 5 andK* = K/wé). We have ThS calculations; dot-dashed line: theoretical ThG calculations;

included in the figure the total MD memory function, which dotted line: ThS binary contribution #(t); long dashed line: ThG

is equal to the exact “mode-coupling” term when the binary binary contribution.
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1 R inans N e Aanas From this relation we can make an interpretation of the dis-
Mg Ca crepancies found between the simulation resultsCoand
o8 ] %%t E the theoretical data.
N ol B ) N ol . Consider first the ThS results. Then it is observed that in
7 w ) the case of Mg the intermediate time values of the theoretical
o5 o 08 bt K(t) are too large. This makes the integral too large, and
0 01 02 08 04 05 0 010208 04 05 06 therefore the theoretical diffusion coefficient is smaller than
1 I iSasasaas 1 e the simulated one. On the other hand, for Ca, Sr, and Ba the
sr Ba long time tail is too small when compared with simulation
_ 05 1 08¢ ] results, and therefore the integral is too small and the diffu-
N ol R N Wbl sion coefficients are larger than the simulated ones.
) N If we now focus on the ThG results we can see that, as
05 05 ‘ commented upon before, the mode-coupling tail is somewhat

0 02 04 08,08 1 12 0 04 08 W 16 2 smaller than the ThS one. Moreover, the binary part is also
narrower. Both facts lead to decreasing the integral and
FIG. 7. Normalized velocity autocorrelation function. Solid line: therefore increasing the values of the diffusion coefficients.
MD simulations; dashed line: theoretical ThS calculations; dot-|n the case of Mg, this leads to a much better agreement with
dashed line: theoretical ThG calculations. simulation; however, for Ca, Sr, and Ba, where the ThS dif-
fusion coefficient was already too large, its increase leads to
decaying tail is too small, and slightly more so when usinga worsening of the results.
ThG. The case of Mg is special since in this case the long Some discussion is now in order so as to consider what
time behavior is just correct, but the intermediate time regiorare the possible reasons for these discrepancies between
is badly described by the theoretit@l,c since it is definitely simulated and theoreticdd(t). There are several possibili-
too large when compared with the simulat€@t). With re-  ties related to the different approximations made in the
spect to the binary terms, it is observed that in general théheory, namely(i) the neglect of the coupling integrals other
Gaussian form is somewhat too narrow, except in the case d¢hfan the density-density onéi) the Gaussian approximation
Mg, where one can see that the hyperbolic secant squared[igg. (26)] made for the self intermediate scattering function

too wide, in fact wider than the total MD results. Fs(q,t); and(iii) the viscoelastic approximation used for the
In Fig. 7, we show the normalized velocity autocorrela-intermediate scattering functida(q,t).
tion function for all the systems. The MIA(t) shows the (i) In the original theory[20,33 there are three other

backscattering minimum typical of high density systems atmode-coupling integrals related to the derivative of the inter-
times around = 2.2r followed by rather small oscillations mediate scattering functions with respect to time and longi-
around zero. Th&(t) obtained from the theoretical memory tudinal and transverse currents. These three terms are sup-
functions show a similar behavior, with small deficienciesP0Sed to be small for the density-temperature region we are
similar to those found foK(t). It is observed that both the- exploring in this paper. However, the inclusion of these
oretical approaches merge into one another for long timed€MS may lead to some improvement over the results ob-

As a consequence of the behavior ioft), we see that in tained when they are neglected. We performed the actual

general the oscillations at long times are somewhat overestf:—alcuIat'on.S V.V'th these three extra tferms included, and foqnd
no essential improvement. In fact, in all cases the decaying

mated. For shorter times, up to the second minimurzi(ej, tail becomes slightly smaller, mainly due to the coupling

quith the derivative of(q,t), thus worsening the comparison

. . . . ith MD and slightly increasing the value of the diffusion

Qntsr,]atzgwﬁs better ;greemglm W'tz t&e S'F““'f‘“t‘?”s-_ FQr gacoefﬁcients. Moreover, in the case of Mg the intermediate
oth resufts are rather simiiar an € simulation 1S 1N be4ime pehavior is very similar when including the extra terms,

tween. : . . . .
. . - . SO no improvement with respect to this problem is obtained
The diffusion coefficients obtained from theZét) are either P P P

shown in Table Ill. Unfortunately, no experimental measure- (i) The Gaussian approximation fulfills a number of
ments of this property have been made, at least to our knowﬁsymptotic limits(smallg, largeq, and smalt), but it is still

eqlge, _and therefore We can _onIy_ compare f[heoretical resulgﬁq approximation, and its accuracy has to be checked. This is
W'_th simulation ones. The dlffusmn_ coeff|C|e_nt can be Ob'not possible in this work since we have not calculated the
tained from the velocity autocorrelation function or from the .., -+ D g-dependent dynamic propertie6(q,t) and
mean square dlsplaceme.nt. As we Sa'd. before, both m.ethoﬁq,t)]. However, in Ref[23] it was shown thatS in,the case
?haevci cqlphs;(tae_nst r?ﬁults tlr? the S|mfulat|onst_and _also _;n thgf liquid Li near melting the deficiencies introduced by the
) Y. IS still anotheér way of compu iy since 'S Gaussian approximation in the self-dynamic structure factor
inverse is related to the time integral of the memory functlonss(q ) [which is the Fourier transform oF(q,t)] are
L] S 1
K(t), namely, rather small, and restricted to the frequency region close to
w=0. This means that the Gaussian approximation is a
. rather good one, and therefore we expect that a more rigor-
D—lzm dt K(t) (3) ous treatment of¢(q,t), although desirable, would not in-
T . X . '
0 troduce large differences into the final results.



6826 ALEMANY, CASAS, REY, GONZN_EZ, AND GALLEGO 56

TABLE V. Initial decay time for(t), and rigidity moduli and 1 . ; ‘ 1
shear viscosities for the liquid alkaline earths. The uncertainties of s | Mg 1 o8l Ca
the MD results are given in parentheses. o6l 1 o6t
g Y g o
04 1\, ] 04f \\
7, (P9 G, (GPa 7 (GPa p$
Theory MD Theory MD ThS ThG Expt. O2F N E BN
e T T 0 Lol it (DT
Mg 0.05568 139 1354 1.07 116 1.08 136 o 04 050 02 0R 06 08
0.2 (0.09 iy ‘
Ca 0.1004 8.2 8.20 1.20 129 120 120 08 -\ Ba
0.3 (0.09 06t
Sr 0.1815 6.7 6.66 21 2.03 1.89 Toal O,
0.3 0.1) e LRI N ]
Ba 0.2546 59 5.67 24 240 223 194 o bl DT 0 e T
(0.2) (0.2) 0 02 04 (2.(%5]0‘8 1 12 0 0.5 tl(ps) 1.5 2
®From Ref.[17]. FIG. 8. Normalized stress autocorrelation function. The theoret-

ical calculations correspond to the Th&hsatz Solid line: MD

(ii ) The viscoelastic approximation, with Lovesey’s pre- simulations; dashed line: theoretical calculations; dotted line: binary
scription for the relaxation time, is a very well known theory, contribution; dash-dotted line: mode-coupling component.
and has been used for a discussion of the dynamic properties
of a large number of systems, including recently binary al-and Ba. This means that the theory overestimates the values
loys[40]. It is known to be a very good approximation in the of 7,.. The reason for this lies on the approximation used for
vicinity of the first peak of the static structure factor, and it the three-body distribution function. The contribution com-
gives a rather accurate description of the dispersion relatioring from this term is comparatively larger in the casergf
i.e., the position of thes peak in the dynamic structure fac- (around 459% than in the case of, (around 10% and
tor S(g,) as a function ofy. However, the exact shape of therefore the errors in the superposition approximation are
S(q,®) is not very well described foq values smaller than more noticeable in the former.
the first peak ofS(q), meaning also that the viscoelastic ~ The amplitude of the long time tail, on the other hand, is
F(q,t) may have significant discrepancies with the MD onesomewhat underestimated by the theory, especially for Sr
in this g region. As we explained above, we cannot make s2nd Ba. Despite these differences observed between the MD
direct Comparison in this case, since the Mm,t) have not 7](t) and the theoretical one, it is observed in Table 1V that
been computed, but we suggest that the use of the viscoela#e values for the shear viscosity obtained either from MD or
tic approximation is the main reason for the discrepancieérom theory are in good agreement. Comparison with experi-
found between the theoretical and MD memory functions. mental data is also good for Mg and Ca, and reasonable for

MD calculations ofF¢(q,t) and F(qg,t) are now under Ba.
progress, and they will be reported upon completion. Fur- The ThG results for the mode-coupling component are
thermore, within the theoretical framework of mode cou-indistinguishable from those obtained through the TS
plings, it is also possible to write down the intermediate scatsatzin the scale of the graphs. On the other hand, the binary
tering functions(strictly speaking, the second order memory component is of course narrower. This therefore leads to
function) as a sum of a binary term and a mode_coup”ngsmaller values of the shear visosities, which are also shown
component. This approach is also under development, ari@ Table IV.
will be reported in due course.

VI. CONCLUSIONS

2. Shear viscosity In this work we performed MD simulations of liquid

The initial values of the stress autocorrelation functionalkaline-earth metals near their melting points using effective
and the initial decay times are displayed in Table V. We segair potentials which could be considered reliable in view of
that the same trends as in the case of self-diffusion are olthe agreement between previous theoretical calculations and
served, namelyr, increases an¢, decreases from Mg to experimental measurements of the static structure factor of
Ba. Moverover, it is observed that the decay times #¢t) these systems. We increased the confidence in the reliability
are significantly larger than those associated with diffusiorof these potentials showing that the “exact” MD results for
7p. The agreement between the rigidity moduli obtainedthe structural properties do reproduce the behavior of the
theoretically and by MD simulations is very good. experimental structural data, and also of the only dynamic

In Fig. 8 we show the normalizeg(t) obtained from property we found in the literature, i.e., the shear viscosity.
MD, and from the theory derived using the T®satz to-  Moreover, the comparison of the thermodynamic properties
gether with the binary and mode-coupling terms of the latterand static structural data obtained by simulation with the
We will only comment on these theoretical results in order totheoretical predictions confirm the validity of the liquid state
keep the figures clear, but we will mention the ThG resultstheory used.
later. Using these effective potentials, we also simulated a num-

In contrast with self-diffusion, it is observed that even for ber of dynamic properties that, although not experimentally
very small times the binary term is too wide, especially in Sraccessible, give physical insight so as to describe the dy-
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namic behavior of the liquid, such as the velocity autocorre-agreement with simulations than the Gaussian form, but this
lation function, mean square displacement and stress autgenclusion may change if better approximations are made.
correlation function. (iii) We verified that for the thermodynamic states consid-
We have also used these simulations to check the validitgred in this paper, i.e., close to melting, the effects of cou-
of a recent self-consistent mode-coupling the[®28], mak-  plings other than the density-density one are indeed small in
ing an analysis of the approximations involved in it. Fromthe case of self diffusion, giving rise to a very small change
this analysis we can obtain the following conclusiasThe  in the theoretical results. We believe the same is also true for
superposition approximation for the three-body distributionthe stress autocorrelation functidiz) We conclude that the
function is accurate enough to describe the initial decay time¢heoretical efforts should therefore be directed to obtain a
of the physical processes associated with diffusion, but natheory for the intermediate scattering functions more accu-
for those associated with shear viscosity. In this case a monate than the simple viscoelastic model used here. Both MD
elaborate approximation, like the convolution approximationsimulations and mode-coupling calculations ofq,t) are
[41] or other recent approaches like that of RéR], may be  currently being undertaken in order to validate this conclu-
useful for a better description of the short time behavior ofsion.
the stress autocorrelation functidii) We verified that both
the hyperbollc secant squared and the Gaussian are_vahd ACKNOWLEDGMENTS
functional forms for the binary part of the memory function
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